C. J. Colbourn and J. H. Dinitz. Handbook of Combinatorial Designs. CRC Press, 2006.


L.Y. Deng and B. Tang. Generalized resolution and minimum aberration criteria for plackett-burman and other nonregular factorial designs. Statistica Sinica, 9:1071–1082, 1999.


L.Y. Deng and B. Tang. Design selection and classification for hadamard matrices using generalized minimum aberration criteria. Technometrics, 44:173–184, 2002.


A. N. Donev, A. C. Atkinson, and R. D. Tobias. Optimum Experimental Designs, with SAS. Oxford Statistical Science Series. Oxford University Press, United Kingdom, 2007. ISBN ISBN-13: 978-0-19-929659-0.


P. T. Eendebak. A canonical form for non-regular arrays based on generalized worldlength pattern values of delete-one-factor projections. 2013. Technical report 2014007, University of Antwerp, Faculty of Applied Economics. URL:


P. T. Eendebak. The Orthogonal Array package: results. 2018. URL:


Pieter T. Eendebak and Eric D. Schoen. Two-level designs to estimate all main effects and two-factor interactions. Technometrics, 59(1):69–79, 2017. doi:10.1080/00401706.2016.1142903.


Clemens Elster and Arnold Neumaier. Screening by conference designs. Biometrika, 82(3):589–602, 1995. URL:


Ulrike Groemping, Boyko Amarov, and Hongquan Xu. Doe.base: full factorials, orthogonal arrays and base utilities for doe packages. 2018. URL:


Gaël Guennebaud, Benoît Jacob, and others. Eigen v3., 2010.


A.S. Hedayat, N.J.A. Sloane, and J. Stufken. Orthogonal arrays : theory and applications. Springer, 1999. doi:10.1007/978-1-4612-1478-6.


J. D. Hunter. Matplotlib: a 2D graphics environment. Computing In Science & Engineering, 9(3):90–95, 2007.


Warren Kuhfeld. Sas. 2018. URL:


J. L. Loeppky, R. R. Sitter, and B. Tang. Nonregular designs with desirable projection properties. Technometrics, 49:454–467, 2007.


B. McKay. Practical graph isomorphism. Congressus Numerantium, 30:45–87, 1981.


Brendan D. McKay and Adolfo Piperno. Practical graph isomorphism, ii. CoRR, 2013.


C.R. Rao. Factorial experiments derivable from combinatorial arrangements of arrays. Journal of the Royal Statistical Society Supplement, 9:128–139, 1947.


Eric D. Schoen, Pieter T. Eendebak, and Peter Goos. A classification criterion for definitive screening designs. Ann. Statist., 47(2):1179–1202, 04 2019. doi:10.1214/18-AOS1723.


Eric D. Schoen, Pieter T. Eendebak, and Man V. M. Nguyen. Complete enumeration of pure-level and mixed-level orthogonal arrays. Journal of Combinatorial Designs, 18(2):123–140, 2010. doi:10.1002/jcd.20236.


N.J.A. Sloane. A library of orthogonal arrays. 2014. URL:


C.F.J. Wu and M.S. Hamada. Experiments: Planning, Analysis and Optimization. Wiley, 2009.


Lili Xiao, Dennis K. J. Lin, and Fengshan Bai. Constructing definitive screening designs using conference matrices. Journal of Quality Technology, 44(1):2–8, 2012. doi:10.1080/00224065.2012.11917877.


Hongquan Xu. Algorithmic construction of efficient fractional factorial designs with large run sizes. 2009.


Hongquan Xu. Doe.base: full factorials, orthogonal arrays and base utilities for doe packages. 2018. hqxu/nsf/.


Hongquan Xu and C. F. J. Wu. Generalized minimum aberration for asymmetrical fractional factorial designs. Annals of Statistics, 29:1066–1077, 2001. doi:10.1214/aos/1013699993.


The Scipy community. NumPy Reference Guide., 2012. URL: